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Scattering from a Round Metal Post
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and Gap

JOHN A. BRADSHAW

Abstract—Improved expressions are derived for the microwave
fields scattered by a uniform electric-field incident on and parallel
to a round metal post, with gap, in wavegnide and in two related
structures. A pair of variational expressions are found for the scat-
tering and for the gap reactance under even excitation. The results
are compared with those due to Lewin, and with data in the Wave-
guide Handbook.

I. INTRODUCTION
&_ MICROWAVE structure of current interest is the

round metal post, extending partway across a rec-

tangular waveguide, its axis parallel to the E lines of
the propagating mode. An open gap will be assumed between
the post and the floor of the guide, although in practice this
gap often contains a passive or active semiconductor. The
structure was analyzed by Infeld in 1949 [1] and by Lewin
in 1951 [2], 1957 [3], and 1959 [4]. Certain shortcomings in
Lewin’s papers triggered the present work which, although
critical of these papers, builds in large part on Lewin's pioneer-
ing efforts.

We will emphasize the field aspects of scattering from a
passive loss-free (PLF) post and gap. The unexpected
clarity of the results makes a comparison with Marcuvitz's
data [5] useful. In a companion paper we will derive the
gap impedance seen by a driven post [6], as recently measured
by Eisenhart and Khan [7]. These authors take a flat strip
as a model for their post; we will, instead, first remove the
sidewalls of the guide to simplify the analysis of scattering by
a round post, and later account for the sidewalls by image
methods.

11. AN OUTLINE OF THE ANALYSIS

Our first model, sketched in Fig. 1, assumes infinite parallel
metal plates separated by a distance b. A metal post of radius
a and ideal conductivity extends down from y=0b to y=d
along the axis of a cylindrical coordinate system (r0y), leav-
ing a gap between y=d and the origin in the lower plate.
The odd system (#8y) was chosen so ¥ fits later into the (xyz)
system of a rectangular waveguide. In this model a plane
TEM wave ~ Re [exp j(wt—kz)] falls on the post, causing
currents along its surface and excess charge near the gap. The
currents and charge cause scattering fields; of these, the
TEM alone reaches large values of 7, if, as we usually assume,
b<N/2.

If the post had no gap, an expansion about the post axis,

exp (—jkz) = Jo(kr) + 2 i (—=)™Tw(kr) cosmb (1)

m=1

would lead to the classical formula for power scattered per
unit incident intensity: the total scattering cross section is a
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Fig. 1. The post with gap, between parallel plates, with the dimensions
a, b, and d, and the coordinates 7, ¥, and 2 of the systems (#8y) and
(xy2).
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Fig. 2. The scattering amplitudes, sin 8, of modes of a round cylinder
of radius g, under excitation by a plane traveling wave ~ Re [exp
—jkz] are plotted against ka.

sum of distinct contributions from each mf mode,
0 i in® (2)
— €m SIN2 6.

k

m=0

Qb =

Here the phase angles 8, are those of the Hankel function of
the second kind, Hn(ka), and €n=2—38,° (We will omit the

' superscript from Hp; cot 8m= — Nn(ka)/Jn(ka) is the nota-

tion of Morse and Feshbach [8, p. 1564].) The first three
contributions to Qb are plotted as functions of ka in Fig. 2.
The extra curves sin J,’ refer to scattering from waves with
electric polarization across the post, and were drawn to re-
assure the reader that such may be ignored. The major in-
terest lies in curves of sin 8¢ and sin 8;; introducing a gap will
not disturb the relative amplitudes scattered from a post
excited by a plane traveling wave.
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Fig. 3. The equivalent T circuits of a post in waveguide, following

Schwinger (8) and Marcuvitz (M).

The relative scattered amplitudes depend, however, on the
type of excitation: in the presence of a second (reversed)
traveling wave ~ Re [exp j(wt-+kz)], the net excitation will
include a standing wave. Schwinger [9] based his analysis of
scatter from a solid post on even and odd standing-wave
fields, cos kz and sin k3, respectively, which excite even and
odd m-terms in Qb. He related the scatter to elements of a T
circuit, S in Fig. 3; Marcuvitz's data on the post with gap are
in terms of X, and X,, the lumped shunt and series reactance
of his T circuit, M in Fig. 3. To compare them, the impedance
across the 1,1 terminals of Schwinger’s circuit, under an even
excitation which produces an open circuit across the 0,0 ter-
minals, is Zu+Z12=j(2X,—X3). The 1,1 impedance under
odd excitation, which produces a short across 0,0 terminals,
is Zyy—Zip= —jXp.

In the data for small gaps, X with increasing post radius
follows the sin 8; curve of Fig. 2. The data appear in three
sets: ka £0.15 for set I, ka(I1T) A0.30, and ka(I1I) £0.60. The
ratio (sin 8o/sin 8;) for these sets is close to 28, 12, and 4, re-
spectively. The present paper considers only scatter inde-
pendent of 6, so at least in the third set we must treat X}, with
some care.

In our analysis, two different routes lead from Maxwell's
relations to formulas for modal impedances Z,. [The Z, are
ratios of Fourier amplitudes in expressions for e(y), the elec-
tric field at the post radius, and I(y), the post current.] In
an example, we will use relations between € and 7 to refine
both functions of y well beyond zero order, where € is as-
sumed uniform in the gap. From e and I we will find .S, the
ratio of scattered to incident TEM components of the electric
field. Again two routes, one direct and one variational, lead to
formulas for S(kb, a, d).

An S may also be found for a post in rectangular wave-
guide, or for a comb structure in stripline [10], and related to
parameters of the equivalent T circuit. After analysis of
Marcuvitz’'s data in terms of this S and the gap capacitive
' reactance X,, we will review briefly some other literature on
these structures. We turn now to work, through the model of
an isolated post, toward results that will apply in waveguide.

III. F1ELDS AND Z, BY GREEN’s FuncTioN METHODS

A brief sketch below of the theory will serve to define
our notation; the major symbols are also listed in Appendix
I. The surface density of current excited on the post, J,(rfly)
=1{y)8(r—a)/2wa, is the source of a scattered wave of vector

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 1973

potential A4, satisfying [V2+4k2]4d,= —uJ,. We will ignore
some details of the gap, including any radial currer‘lts there.
With Green’s second theorem one finds Ay=uff/i, GJ, dv'
+ a surface integral. In this form, v is the} volume
{0<y<b, 0<r<R} in a large cylinder around the post,
and G is the (yy) term of a dyadic Green’s function [11].
We can treat G here as a scalar. The surface integral|vanishes
by reason of a radiation condition at =R, and because the
normal derivatives of G and of 4, vanish on the metal plates
at y=0and y=>0 [12].

The complete expression for G satisfies [V2rHk2]G=
—8(x—%"), and appears in Appendix II. The part|of G in-

dependent of 8 is
Golr, 7’5 3, 9") = — jHo(kr>)To(kr <)[(48)7]

i
—_

+ i Ko(Fn0r>)]0(I‘nor<) [(ﬂ'b)”

n==l

-cos nwy' /b cos nry/b. (3)

Here H, is the Hankel function, J, is the Bessel function, Ko
and [y are modified Bessel functions, 7 < represents the radial
position of the source point &', and 7 > represents the position
of the observer at x. We assume b <\/2 so that [',o2= (nwr/b)?
— k% is positive for # > 1. To emphasize dependence on 7 or a,
in this section and the next, the arguments of J and Hy(kr or
ka), and of Ko and Io(I'yer or T'ya), will be written (#) or
(@). Writing I(y) as a Fourier cosine series in 0 <y<¥, thus
I(y)=Io+2> p-1 I, cos nwy/b, one can integrate formally
over GI to obtain 4, fory>a:

A, = N

I()H()(T)Jo(d)

ue
+ ~ > Ko("Io(a)I, cos nry/b. (4)
T n=1
From here on wy/b will usually be shortened to 4.
The scattered fields derived from 4, have three vector
components:

. 1 o2
Ey == —]w 1 —I—%; 3_3; Ay
w 0?2
Ef = —fj— —— 4,
k% ord
d
pHyt = — 5 4,. (5)

We will omit ES; writing dKo/dg as Ki'(g), we find for
E,* and Hg:

wi
Eys = — z I()Ho(f)]o(d)

fwu & T2
+ S > IKo(r)Ie(a) cos ni ——]:— (6)
w 1 4

N==

ik
Has = Z IQH()’(?’)]()(G)
1 0
— = > LKy (N To(a) cos niTm. (7)
T n=1

Atr=aqa, both in the gap and along the surface of the post, one
can assume a second Fourier cosine series to represent the
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total y-component of electric field: e(y) =e®+2 D m_1 €, COS
nd. This total field may include both incident and scattered
elements, e =¢€'+¢’; in (6) we can find €=ES (r=a). Now
comparing Fourier coefficients leads us to define the modal
impedances mentioned previously:

kb
Zoly= —eosb, Zy =—Z‘ Ho(kd)]o(ka) (8)

ISk

Zoly=—eb, Zn= —TKO(I‘"Oa)IO(I‘ @) o2 [E72]. (9)

Lewin’s result by this method, his equation for Z,, is [3,
eq. 10]:

JSkb

=%Xs = = = Ko(Tnt) Tns® [2]. (10)

He also anticipated a factor exp (nwae/b), but did not give

Iy(Tpoa). In tégse formulas {=1/7 is the usual impedance of
free space v/u/e.

IV. FIELDS AND Z, BY A DIRECT MATCH

To confirm the results above, one can find modal admit-
tances, inverses to Zo and Z,, by a complementary approach
suggested in Lewin’s 1959 paper [4]. E,, as a solution of the
wave equation outside its source, the current cylinder at
r=ga, must have the form

HO(') 2 i . Kolr)
0(0)

n=1 ola
The corresponding trial forms for E,® and Hp® must satisfy

(11)

Y Ccos #il.

OE,s 1 orEs
dy v or
AE,;s  OES .
- = — jouHy. (12)
dy ar
Hence, again omitting E*, we find
Hy'(r) en Ko'(r)
Hy = — jne® ——— + 2jkn Z ———=cos nit. (13)
0( ) n=1 I'no Ko(d)

In the gap and inside the current cylinder, the matching
trial forms must be well-behaved at =0 and must satisfy the
wave equation. E,® must be continuous across r=a, but Hy®
will be discontinuous by the amplitude of the y-directed cur-
rent:

f oS TR e )

Hy = *160717(;% 24 i €n ?;(r)) cos }% (15)
1(y) = ZmadHelr = o) = = "e"s{;kij} Ho(j;TJao(a)

i 2”:‘-: ' «Zzi(a) I‘k{I‘_la} cos mit. - (16)

Here the terms in brackets represent the Wronskians {H,,
Jo} and {K,, Io}. The desired modal admittances, defined
by fo= — Yeo®d and by I, = — V,e,b, can be identified in (16).
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Fig. 4. Trial forms for e(y), the gap field, and the corresponding forms
for the post current I(y) are plotted against #=my/b, with the gap
parameter u = nd/b taken as 5/8.

Comparing them with (8) and (9), one finds, indeed, Y,
=1/Zy and V,=1/Z,. Lewin's result by this method is in
[4, eq. 5]:

ka K (Twa
Y, = 4myj o (Tnod) .
Tob KO(Fnoa)

(17)

Lewin omitted the fields inside the post and missed the
correction — Iy'/Iy which, with Ko'/K,, gives the Wronskian
and aligns the forms in (16) with those in (8) and (9). In our
view [13], the incident field E,m*=E,* exp (—jks) passes
through the post and gap; the scattered fields inside the post
radius are included in the Green's function and are required
in this boundary-matching method too.

V. AN ExaMpLE USING THE INTERRELATION OF J(y) AND €(y)

For a PLF scatterer, we require e/(y)=0 on the post
(d<y<b), and I(y)=0 in the gap (0<y<4d), so the integral
of their product vanishes: fge(y)l(y) dy=0. First a direct
approach will show how the form of e(y) in the gap affects the
form of I(y), and through I, S. Later we will determine S by
variation of the integral.

The direct route is smoothed by use of functions related
to Clausen’s integral [14]. Starting this route, we represent
e(v) in (0<y<b) by a product of a unit step function £(d—y)
with a power series in @ (here =1 if y<d, h=0 if y>d).
We next express each term of e(y) by a Fourier cosine series
f.. The nth coefficient in such cosine series, when multiplied
by Y., becomes, as we have seen, the nth coefficient in the
corresponding cosine series g; for I(y). Then the weight of
each power of # in e(y) is, with I,, adjusted so that I(y)
vanishes in the gap. Two observations simplify this process.
First we note that Ko(X) Io(X)=1/(2X) to within 0.6 per-
cent if T'poe=X >35, within 4 percent if X >2, and exactly
near X =3. The relation is of no use below X =0.4, but where
it applies we may write

V.Ddmnjka?/Xb orif XOnwa/b, Ya.L4jnka/n. (18)

Secondly, we note that dividing each Fourier coefficient in f;
by #n yields a form g; which-readily converts back to a short
Clausen series in powers of 4.

The example in Fig. 4 shows three steps in the process of
improving e(y) through I(y); in it we take u=wd/b, the gap
parameter, as § =u. The three trial forms were the uniform
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field e(y) = Eoh(d—2), and € (y) =Eoh(d—y)(1+aa?/7?), and
finally, with two adjustable coefficients, €’(y)=Eok(d—)
(14-ba/m+ca?/x%). The choices plotted are a=1 for ¢, and
5=0.28 and ¢=0.69 for €'’. The explicit forms for f; and g,
and a figure illustrating these forms for =1, 2, 3, and «=4$,
have been retired to Appendix III, In Fig. 4, with the uniform
field €, I(y) is zero at #=0, but increases as g:(0)—gi(%)
across the gap; with ¢’, I’ in the gap has a second zero; I"
presents a further improvement, and the process could be
carried to higher powers of # in €(y) as in minimum-ripple
filter design.

The curve E, in Fig. 4 is a static E,(y), calculated at
r=a for a charged ring at y= (d-}s), with ring radius # = (¢ —1)
and with s=¢=g/4. [t represents the effects of rounding the
post edge. The dashed curve E;, for comparison with ¢’ and
¢”’, represents Schwinger’s field [9] in the plane of a capacitive
iris, and is more singular at #=# than those we should con-
sider.

The exact contour of the post end near y=4d will affect
I(y) and e(y) there; given a detailed model one might formu-
late a precise edge condition as required in Wiener—Hopf
techniques. The oscillations (Gibbs phenomenon) which the
Fourier series for f; develops at y=d should be mentioned.
Finally, the coefficients @, b, ¢ in the trial forms of e(y) were
assumed to be real; however, these will be complex if modes
others than TEM propagate (6>A/2). Then ¢ and I may
change shape within each cycle, as is the case for I(y) on the
linear antenna [15].

VI. A DIRECT SOLUTION FOR S
Fine details of the post end should have less effect on S
than on e(y). Since o= — Y&®S and e’ =e’(1+S) the con-
dition I(0)=0=1I¢+2> -1 I, yields an equation for S
=e’/€o':

SYo + &kan(1 + S)g(u) = 0. (19)

Here, if we may use Y, Adjkay/n, the real function g(u) is
linear in g;; in zero order it is simply g;(0)/#, and in general
through Clausen’s series g(u#) can be putin the form:

q(u)=Ao—lnlul + Awn?/72 + - - - (20)

The constants 4y and 4,, evaluated with formulas from Ap-
pendix 111 for the trial curves ¢, €', and €'’ of Fig. 4, yield the
the values 4,=1, 0.833, 0.877, and 4,=1, 1.20, 1.15, respec-
tively. Thus 4 and 4, depend little on the coefficients @, b, ¢,
and the main term, — In |«|, at small « is independent of
them. For comparison, Schwinger’s direct solution for the
capacitive iris is:

g(u) = Incscu/2 = 0.693 — In ]u[ + u?/24 + - - ..

To examine the solution for S, we rewrite the complex
equation (19) as two real equations with S=s-4j¢. We find

(21)
(22)

s24-t2+s+icotdy =0
5= t(SkanI Z0| csc 8og(#) — cot &p).

The first equation defines a circle on the complex S plane,
which passes through the points S=0 and S= —1, with center
at S=—2%[1+j cot 8] and radius % csc 8. The circle thus
depends on ka, but not on ¢{#u) or on the gap d. Its intersection
with the line through the origin given by (22) defines the
complex scattering S for a given post and frequency.
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VII. VARIATIONAL EXPRESSIONS FOR .S

S may also be found from integrals in forms which reduce
the effects in .S of “errors” in e(y) or I{y). Let us denote by
e(y) and i(y) the sums (z>1) in the cosine expansions of e
and I:

e(y) =22 e, cos nit = e(y) — et

n=1

i(y) = 2 > I, cos ni.

n=2

(23)

The Maxwellian conditions relating e(y) and ¢(y) in (6) and
(16) can be incorporated in two kernels which are real, sym-
metric in (y, '), and orthogonal to 1 in the interval (0<y
<b). With them we write the parallel forms:

e(y) = —j fo k(y, ¥'; Z)i(y') dy'

=i wyintnay @
i(y) =7 f k(v,y'; Ve(y) dy’
=7 f k(y, y'; V)e(y') dy'. (25)

Here the kernel 2(Z) depends on the modal impedances Z,
defined in (9), and the kernel £(Y) depends on ¥,. The second
form in each case following is a closed form, but it depends
on the approximation from (18), ¥,%=4jkan/n:

2 o0
= > Zn cos nwy/b cos nwy' /b

b2 n=1

o)
=~ Sta sV y)

+ (1 - cosg & - y)>—1:|

— 2§ > ¥, cos nwy/b cos nay' /b

n=1

— 4kan[ln2[ cos Ty/b — cos 1ry’/b| I

k(y,y';2) =

(26)

k(y,9';Y)

I

(27)

The relation f e(y) I(y) dy=0 now has two forms which
the reader will recognize as “variational.” To bring this out
let us define Y = (¥YoS)/(1+.5) and its inverse Z=Zo(1+S)/S
so that e'dlo=jY[[foe dy]2=5Z[f5I dy]®. But e'blo=
— [3e(y) i(y) dy, so:

b b
wslo=i [ [ 10100k, 2) dyay 29
0 0

==—7 fo fo eMe(y)k(y, y'; ¥) dydy’. (29)

Thus (28) is stationary in Z for small departures 6 from the
true current form, provided 61 vanishes, like the true I,, in
the gap; and (29) is stationary in Y for small departures de
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Fig. 5. A post at (xg, %) as seen from above in a waveguide of width w,

and the image posts at x = +x¢+2w.

from an exact €(y), if d¢=0 on the post. Completing the in-
tegrals, we find two forms for S:

b 14
Y= =23 erFala]? = — Sjkang(n) = —

30
Rl 1 +S ( )

Z = — 23 LAZ[I]* = + je[8kag(u) ]

n=1

(31)

The first form suggests a model for Y: a parallel connection of
modal admittances seen through transformers with turns
ratios €,/€q’. The second form suggests a model for Z: a series
connection of modal impedances seen through transformers
with turns ratios I,,/I,. The choice of circuit model depends
mainly on whether one knows, or can guess, more about
e(y) or I(y).

Equation (30), with the form of ¢(y) used in Fig. 4, yields
for g(u) the same expansion given in (20), but with 4,
=0.807, 0.790, 0.820 and 4.=2.00, 2.34, 2.40 for ¢, €, and
¢'’, respectively. Again, the main term for small % is —In ]ul R
independent of the coefficients a, b, ¢; Ao and A, do not change
much either as e(y) improves.

VIII. SCATTERING IN RECTANGULAR GUIDE
AND IN STRIPLINE

These results may now be applied to more practical cases
of scattering from a post with gap. The sidewalls of a wave-
guide, at x=0 and x=w as sketched in Fig. 5, are mirrors for
a single post with axis at %o, 2o. If m is any integer in (— o,
« ), the image posts at x = xo+ 2mw carry currents (y), while
image posts at x= —xo+2mw carry —I(y). In a stripline
crossed by a comb structure, each combtooth or post in a
lattice of cell width w will carry the same current I(y); in a

regular comb, xo=w/2 [10]. In both guide and stripline,

Green’s functions may take the form of sums over these
replicated sources. Poisson’s formula, as given in Appendix
1V, converts sums on Hy and on K, to sums on sinusoids.
We use it with the =0 (H,) sum, but it is both convenient
and reasonably accurate! to retain in our Green’s functions
only the nearest, or actual post, as the source of terms for
n>1. The G(n) following appeared already in (3):

G(n) = i Ko(Toor) Io(Tn0a) ()1 cos nry’ /b

n=1

ccos nwy/b. (32)

For waveguide (wg) and stripline (sI), with X?=k?— (x/w)?,
and T2 = (mw/w)2— k2, where m >2, from Appendix IV we

! Evanescent modes (#>>1) from sources in other cells make a very
small addition to A, in the main cell, if Tnow > 2, 80 Ko(T'noa) > Ko(Tno2mw).
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find
Jo(ka) (exp—iK|z—z2
G(wg) = o(ka) { pJ - I OI sin /1w sin wxy/w
bw iR
= exp —Tou | 5=20] .
+ > sin mrx/w sin marxo/w
m=2 POm
+G(n) (33)
(sl = Jo(ka) {exp —jk.l 5—20|
25k
2. exp —Ton|3—3
+ 2 P ‘ ‘ Ol COS mrs/1w COS mn-xo/w}
Mme=1 I10m
+G(n). (34)

These two Green’s functions could -be derived from
[V24£2]G= —8(x—%'), with the right boundary conditions
on the cell walls, instead of replicating image terms. Even the
factors Jo(ka) and Io(T'noz), due to integrating over sym-
metric current distributions on the post surface, could be
found by this route too. By the route we chose, each post sees
the same €%, which includes scattering contributions from all
the others, so the mutual interactions of post and images will
be included in an €° based on the terms with #=0in G.

The scattered fields for both structures are derived in
Appendix IV from A,=ufS G(y, y0) 1(y0) dyo. Variational
forms arise from f§ e(y)I(y) dy=0, as for a single PLF post,
but the impedance Zo= —€,°/I, is changed by image effects:

kb K 7 B
Zo(wg) = —— Jo(ka) sin — sin — (%o + @)
KW w w
(1 4 jcote(wg) (33)

b
Zo(sl) = %Jo(ka)(l = 7 cot e(s?)). (36)

Here cot e=Im (Z,)/Re (Zo) plays the role of cot d for an
isolated post, and is given by a series like Lewin’s equation
[3, eq. 11], or Marcuvitz's equation [5, sec. 5.11, p. 256,
eq. 1]:

cote(wg)= p, —

m=2 I1Om

o {sin mxo/w sin mm(xo+a)/ w} 37
sin wxo/w sin w(xo+a)/w

)

cote(sl) = D, —Ze— [cos mawra/w-+cos ma(2xe+a) /w]. (38)

m=1 Om

Because we can retain G(»), Z, remains the same as in (9)
and ¢(u) in (19) is unchanged, but ¥, will be given by 1/Z,
(35) or (36); with this change, and with e replacing 8, the
circle and line equations (21) and (22) apply now to scatter
from a post in waveguide or in stripline.

I1X. CORRELATION WITH MARCUVITZ's DATA

Marcuvitz's data, although taken before 1950 and printed
without analysis, are at least readily available. The data con-
sist of values of X, and X3, as noted in Section II above, for a
centered post in X-band guide (0.9 inX0.4 in). They are
given in three sets for posts of radius 1/32 in (I), 1/16 in (II),
and 1/8 in (II1); in each set three frequencies, corresponding
toA (free space) of 3.4, 3.2, and 3.0 cm, were used, and a selec-
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Fig. 6. Marcuvitz's data, converted to a normalized input impedance
Zin=Rin+7Xin, seen locking at a post backed by a matched load and
plotted on the Smith chart. Key: +a=1/32 in; Ae=1/16 in;
[Ja=1/8in.

tion of three to six gap sizes. Analysis of these data will show
how our scattering results apply, and how the gap reactance
depends on gap size and post radius.

To start on familiar ground, we plot Zi,(X., X3), the nor-
malized impedance seen looking at the post backed by a
matched load, on a section of the Smith chart in Fig. 6:

Zin =j(Xa - Xb) (1 - W) + W;

W= X214+ (X, — Xt (39
Data sets I(+) and II(A) fall on or close to the dashed circle
R=—(1+2jX)"1. In set III{[]]) the points fall below this
circle and show the importance in Z;, of the series term Xj.
The reflection R of a traveling wave passing a lossless ele-
ment with simple shunt reactance X falls on this circle for
any X in (— o <X < ). The values of # indicate gap width;
the frequency variation within each set (<14 percent) is not
coded.

We replot data sets I and II on the S plane in Fig. 7,
using the relations:

Zu—1l _ o B pigjcoto=5=". (op
—_— = CcO = _ —
Zin + 1 Eyi I ) 501:

Fig. 7 illustrates the S equations (21) and (22) and serves to
contrast S, the (z=0) field ratio at the post surface, with R
of Fig. 6, the wave-field ratio at large [z—zol. Since cot €
depends on frequency {or ka) and fixes the center of the S
circle, Fig. 7 also spreads the points: set I points (bcd) have
ka=0.147, 0.156, and 0.166, respectively, while set I1 points

2 At large [3—20| only the imaginary part of G(wg) from (33) con-
tributes to E,?, so E,*b= —I; Re (Zy); for a centered post E,,"=80"; by
definition ZeIo= = &¢*b.

Fig. 7.
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Fig. 8. Symmetric or even field excitation of a post in a waveguide and

a lumped element model after Schwinger.

(0pg) have ka values double these. To avoid cluttering Fig. 7,
only one complete circle is drawn for each set. The value of
cot € may be taken from the data (for a post with no gap,
= —1) or calculated from (37); here agreement was good.

To include data of set III in further analysis, the reflection
R of Fig. 6, from one traveling wave, must be distinguished
from R,, the reflection under symmetric excitation or even
fields. Opposite traveling waves of § unit amplitude, incident
from left and right in Fig. 8, may give an even unit field at
the post. The waves pass through the post, and the post, as-
serting its boundary conditions, radiates a reflection R, both
ways. At a plane &|z—zo| =n to the left of the post,

s D+ (AZFR) 4R
/2 -2+ Ry &

=j(2X, — X3).

(41)

To find the gap reactance X,, we first insert Zo=Re (Z¢)-
(147 cot e) and S=R, (14 cot &) into (19) to obtain

1

1+ = + j{cot e — [8kan Re (Zo)g(w)]1} = 0. (42)
$

In this expression one can identify the reactance of a post

with no gap, Xo=cote=(2X,—X3) | u—o, and X,, the deviation

from X, caused by the gap:

X. = [8kan Re (Zo)q(w)]™* = AQX. — X3).  (43)

For thin posts, R= R;, and the shunt reactance of a thin post
with gap is X =3(Xo— X,).

Solving for g(z) in (42) we plot the data points, including
set 111, in Fig. 9 as ¢(u) = [8kan Re (Zo) X,]™!. The dashed
curve ¢- was found by variational methods [(30) and Appen-
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Fig. 9. The gap reactance function ¢(u) as calculated from (44) in the
solid curves and as found for the point sets I, I, and I1I from the data
in the Waveguide Handbook. Key: +a=1/32 in; Aa=1/16 in;
[Ne=1/8 in.

dix ITI] in zero order, i.e., uniform gap field and no adjustable
constants:

(1) = 2Q5(2u) [(2u)~2] = 0.807 — In | u]
+ u?/36 4 - - .

The solid curves give ¢(u) corrected: Yi* of (18) is a poor
estimate for the first modal admittance, ¥1° of (9):

o) = g+ (/oo [u—]

(44)

45
4jkan (45)

Here, in zero order, e/e’=(sin #)/u. The correction for ¥,
proved negligible. The data points fall along the solid curves
with some scattering. Lewin [3] predicted the logarithmic
trend of ¢(u) as #—0, which the data points also show.

Eisenhart and Khan in [7, fig. 22] plot Xoys' against fre-
quency, and a reviewer requested this format for Fig. 9. The
gaps used by Marcuvitz differ from run to run, however, so
his data must be plotted against . In the limited range of
frequency explored (Af/f~13 percent), P(f) =8kan Re (Z)
is near a minimum, and varies with f less than 1 percent:
Pr=0.768 for set I, Pr;=1.485, and Ppur=2.56; the near
doubling of P from set to set reflects mainly the doubling of
the post radius a. We plot ¢(#) in Fig. 9, therefore, without
coding frequency. Readers who wish to visualize results in
terms of 1/X, may multiply ¢(#) by this factor P.

X. FurTHER DiscussioN oF LEWIN'S PAPERS

In Lewin’s 1957 paper, the gap is also the input to a
coaxial line; it experiences “a voltage drop Z:I when a current
flows at the end of the probe,” and the “field at the stub sur-
face is Z:I 8(x)” [3, p. 110]. Changing Lewin’s x to our v, we
may take Z:I §(y) as the limit of — (V/d)k(d—y) as d—0, a
common form in antenna work [16]. Lewin’s equation [3,
eq. (3)], relating the gap field to the field scattered there by
I(y) on the post, is an assumption about the form of e(y).
When Lewin “solves” for I(y) in [3, eq. (13)-(20) |, he makes
its Fourier expansion consistent with e(y). If e(y) be the trial
function, it belongs in a variational form for e(y), our (30);
such apparently is Lewin’s equation [3, eq. (23)], although
he started with a form variational in I(y) like our (31).

The series Y n.1 1/7X, in Lewin’s equations [3, eq. (18)-
(23)] diverges wildly. If it represents 3 w1 Va|€|?/|€*| % the
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divergence can be blamed in part, as Lewin suggests, on al-
lowing the “turns-ratio” for a uniform field €,/€* = (sin nu)/
nu to become 1 as his gap vanishes. But the divergence is
also due to the form X, [3, eq. (10)], and he suggests stopping
the sum at n="0/2¢ when the lack of the factor Iy(I's0a) be-
comes disturbing. This factor in our ¥, protects our sum in
(30) from divergence, and was obtained through boundary
conditions on fields inside our fictitious cylinder of current.
[The actual current density depends on 7 as Jo{— +/jwpor),
a cumbersome form which all models avoid.] Lewin, in pro-
posing the similar factor exp (I'no2), also considers relations
in the post between his fictitious axial current filament and
the post surface.® In his 1959 paper [4], Lewin gives in cylin-
drical coordinates the evanescent fields near an isolated post;
he includes effects of a current sheet and a visible gap in his
model, thus improving his 1957 paper in several ways. He
does not, however, reconcile the 1959 and 1957 results or put
the post back in the waveguide as we have done.

Lewin’s fifteen-year-old problem with divergences should
challenge others to supply a firmer analysis, yet several more
recent papers [10], [17], and [18] use his waveguide results
without improving X,. Collin [19] also treats the probe
antenna in a waveguide, integrating over a product of
Green’s function and J, “currents on the probe and aperture
surface” [19, p. 258]. Four pages later he allows the current
to shrink to a filament. Thus as with Lewin, Io(T'see) =1,
but Collin keeps to a form variational in current. Thus for
his Z,, the sum 3 mmq Zy| I.}2/| Io| 2 no doubt converges too
fast, but no series in 1/Z, arises, and no divergence problem
either.

XI. LINES FOR FURTHER WORK

Lumped equivalent circuits often help in systematic in-
terpretation of microwave data, as for instance, Tsai, Rosen-
baum, and MacKenzie [20] demonstrate for the post, but
one needs an adequate field theory, even for this simple
geometry, to develop circuit parameters [21] and to know
how far to trust a given circuit. For a post in multimode guide
one needs a field theory of a round model rather than a strip
[7]. Thus our discussion of scattering from a post, and a
companion discussion of the driven gap, should be extended
to include odd excitation of thick posts, and multimode ex-
citation,

Criticism in microwave field theory has a distinguished
tradition; for example, Bouwkamp [22] found a hole in
Bethe's famous paper on small coupling holes [23], and
Wigner [24] found an omission in Slater’s expansion on
cavity mode fields [25]. The gap between Lewin’s two in-
fluential treatments of a post with gap was in part clear to
Lewin; I hope I have filled itin.

ArpENDIX I

Symbols used in two or more sections are listed alpha-
betically as follows, with the Section (in parentheses) in
which the symbol first occurs.

a,b,d Post and gap dimensions (II and Fig. 1).
Ay Vector potential component (III).

3 Certain statements in [3, sec. 4, pp. 112-113] seem to me to involve
the 6 dependence of the incident field, although Lewin writes me that
they do not. Gutmann and Mortenson [10] in a parallel discussion justify
stopping the sum at #="b/a by a need to account for higher modes in the
gap. Neither the consideration of @ variation nor of higher gap modes
seems to me central to the divergence of E: 1 1/iX.; neither considera~
tion is a trustworthy guide to correcting it.
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Ao, As

b, w

€(y)

el, 6"

€;, €

€0y €

E()y a, b: (4
ES, HS

G, G,
G(wg), G(s))

G(n)
Hy, Iy, Jo, No, Ko

I(y)

Io, I
k=w/c
q(u)
Qi(n)

7, 0,y

S =s-+jt

$=1/n
w=2mc/\

. . e
For a unit y-directed current source at x’,
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Constants in the series for g(x) (VI).
Waveguide dimensions (VIII).

Electric field at =g (post surface) (1II).
Versions of e(y) (V).

Incident and scattered parts of e(y) (II1).
Fourier amplitudes of e(y) (III).
Constants in the expansion of e(y) (V).
Field components scattered away from
the post (1II).

Green’s functions for an isolated post
(111).

Green’s functions for a post in guide or
comb (VIII).

Sum of modes # >1in Go (VIII).
Standard notation for Bessel functions,
always given with variable, thus Io(T ,a)
(I1).

Post current (I1II).

Fourier amplitudes of I(y) (III).

Phase constant of plane wave (II).

Gap reactance function (VI).

Clausen series (IX and Appendix II1I).
Coordinates on the post (I and Fig. 1).
Ratio of scattered to incident fields on the
post (IT).

Normalized gap width (V).

Normalized distance along post axis
(I11).

Reactances in Marcuvitz's T circuit (IT).
Post reactance elements under symmetric
fields (IX).

Waveguide coordinates (II and Figs. 1
and 5).

Position of post axis in guide (VIII).
Modal admittances of isolated post (IV).
Modal impedances of isolated post (III).
Fundamental modal impedance in guide
for a post (VIII).

Phase of Hankel function H,(ke) (II).
Mode constant on an isolated post (II1).
Evanescent mode constant in waveguide
(VIID).

Phase of Zo(wg) (VIII).

Wave constant of TE;, propagating mode
(VIID).

Impedance of free space (III).

Angular frequency (II).

ArpENDIX II

causing a -

directed vector potential at ¥ between parallel metal plates
at y=0 and y=b5, the complete Green’s function is G(7, 7’;

¥):
G = Ho(k[r—r[)+ ZK(,(rnoir—r\)
7[' n=1
- COS n_;)rg cos kit (46)

Addition theorems for the Ho and Ko above yield explicit

forms:

Hy = Ho(kr>)]0(kr<)

+ 2 i cos m(0 — ) H,(krs)Tn(kre) (47)

m=1

Ko = Ko(Tnors)Io(Tnor<)

+2 Z cos m(f — 6')K(Tnors) [n(Tror<).

m=1

(48)

AppeENDIX TI1

Collin [19, p. 576] outlines a technique which others
might use to advantage (for instance, Eisenhart and Khan
[7, p. T11]) for replacing slowly convergent Fourier series
with rapidly convergent power series related to Clausen’s in-
tegral [14].

1) To use this method with e(y) we define fi(#, #) thus:

f¢+1{ﬂ, u) = fufi(ﬁ, w) dw

folit, ) = Y, cos ni cos nu.
n=1
Wefind fi= 3> n—1 (1/#) cos na sin #u, fa= > n-1 (1/%)% cos na
(1— cos nu), and fs= 2,1 (1/n)% cos na(nu— sin nu); two
of these are well known by other symbols, (7/2)8(u—a)=1%
+fo(4, u) and k(u— ) = (/%) +(2/m)fi(a, u):
f3]

ah(u — @) = u + 2[f1 — fo/u]
2
wh(u — a) = 27[ fe
2) On dividing each nth Fourier term in f; by #, we obtain
gi; for instance, go(#@, #) = Y .n~1 (1/n) cos na cos nu. In fact

(49)

+f1——‘+ (50)

©

i
go—z;/b

n=1

[cos n(@ + u) + cos n(a — u)]
(51)

as in (27), but the g; for ¢ >1 do not have closed forms. Sim-
pler forms Q;, defined like f, by iteration of integrals, are useful
to express g;; thus with Qua(u) = J§ Q:(w) dw, we find

= —$[In2] cosu — cos @ ]

* 1
QO(M)=Z—cosnu=——ln[25in1i:|
n=1 1 2
4
=—1
n |l 2 +144O+
,u3
Orw) =u[l —In|u|]+—+--.
72
=22 m fu ]
Qolu) = 212 n|u —[—58—84_

Q()_Ml:ll 1 l !:| %5
314—6 p n{u —I—m)—l-n-

it

(52)

g [ﬂ[w _ sin ]

In terms of Q’s, the functions g;(#, u) plotted in Fig. 10 are
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Fig. 10. The gap field functions f;(«) and the post current functions g;(«)

near the gap, which give the basis for Fig. 4.

g1 = 301w + @) + Qi(u — @)]
g = 3[Q:(u + @) + Qu(u — #)] — Qa(®)
gs = 3[Qs(u + @) + Qu(u — @)] — uQu(@). (53
3) If e(y) is given in terms of fi, fz, and fs, then I(y) can
be expressed with gi, g, and gs. Thus as plotted in Fig. 4,
Ewu
T

o) = Lo+ ]+ 2 ot o0 — o/

+c(f1~~2£« + zf“’ﬂ (54)

w
b
() = Io — SjkanEy” [gl + bg — go/w)
m

2 2
+ c(g1 -y —i“‘—)] (53)

U u
When e(y) and I(y) are given by such forms, the integral
which defines ¢(x) in (30), fy e(y) i(y) dy, consists of terms
of the form fZ)' fig; da which integrate to give Qu;(2u). For
example, from (43), [5fige da=2 Qu(2u)[(2u)~2]. Here we
have an accurate form for the whole “tail” (n— ) of the

Fourier series for g(u), although we may still need to correct
the “front end” (n=1) as in (44) if V*# V1°

ArpENDIX IV

Forms based on Poisson’s summation [19, p- 588] will
allow us to include neatly the image sources for the fields.
1) Whenever the Fourier transform of f(b), F(r) = [« f(b)

exp —jbr db exists, it follows that 2 ,__. flan)
=(1/a) X p-—-w F(Q2mp/a). The transforms we need are
[19, p. 268]:

f exp jrbHo(yv/a* + b%) db

= Zjexp {—avrP = H{vIE— |t (56)
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f exp jrbKo(y+/a® -+ b2) db

= m exp {—d\/‘l?—'-—y—z} {7'2 + yz}“l/z. (57)
Now let b=x—x94¢, db=dq, a =3—2o, and y=Fk; then pass

to discrete forms 7—2rp/a=np/w and ¢—2mw=am. One
finds

i Hoy(k/ (3 — 20)% + (x — xo + 2mw)?

[—

e .
_—a >, —exp {——Z;@(x——xo)—~l"0p|z--zol}

27 »,001
-I—~]— —-——cosﬂ—’(x—xo)exp{_I‘oplz—-zol}. (58)
W p=1 I‘Op w

Lewin [3] uses the similar sum over

Ko(Truov/ (z~20) 24 (2 —xo-+ 2mw)?).

2) In the waveguide, E,"*=FE? sin (rx/w) exp —jkz
and H,°= (yx/k)E,*°; we follow Lewin in choosing on the
post the surface point =3¢, x=2x¢+¢, at which to evaluate
the scattered field component e°. At a reasonable distance
from the post E,® consists only of the first term below times
exp ——j:clz—zol : the terms with m >2 are each attenuated by
a factor exp { —Ton|2—20| }:

k X xo +
€S = — E"—Jo(kd)lo {Sil’l2 Sinl(qc0 —a')‘“
w

KW w

&k ma(wo+ @) | mwxg

47 Z —— sin sin } . (59)
m=2 Tom w w

3) For a stripline similarly, at a reasonable distance, the

first term below times exp {—jk|z—zgo| } alone survives in
ES:

éos = — —g‘—I()]()(kd)
2w
© k 2
. {1 e ——[cos PTE 4 cos l”—x"]} . (60)
m=1 I-‘Om w w

H,* may be found from E,*, and then Zo(sl) as in Section III.
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Gain-Bandwidth Limitations of Microwave

Transistor Amplifiers

RODNEY S. TUCKER

Abstract—Gain-bandwidth limitations of broad-band single-
stage microwave transistor amplifiers are related to a simple transis-
tor circuit model, to constraints on characteristic impedance in a
distributed-element equalizer, and to the line lengths of this equal-
izer. The gain-bandwidth performance of commensurate distributed-
element equalizers is compared with the performance of a lumped-
element equalizer, and four distributed-element design examples
are presented, including two commensurate equalizers and two
computer-optimized networks.

I. INTRODUCTION

TIMULATED by developments in microwave transistor

technology, a number of authors have discussed the

problem of broad-band microwave transistor amplifier
design using computer-aided techniques [1], [2]. Recently,
the work on broad-band impedance matching introduced by
Fano [3], and extended by Youla [4] and other authors, has
been applied to the synthesis of distributed commensurate
equalizers for microwave transistor amplifiers [5]. This pro-
cedure relies upon certain approximate models of the transis-
tor, but has proved successful in the design of single-stage
and multistage amplifiers and in the problem of choosing an
appropriate design with which to begin a computer-aided op-
timization scheme,.

Manuscript received July 10, 1972; revised December 11, 1972, This
work was supported by the Australian Radio Research Board.

The author is with the Department of Electrical Engineering, Univer-
sity of Melbourne, Parkville, Victoria, Australia.

This paper extends the scope of work previously reported
[5]. In Section II the gain—bandwidth limitations of a single-
stage amplifier are related to a simple transistor circuit model,
to constraints on the characteristic impedance in a distrib-
uted-element equalizer, and to the line lengths of this equal-
izer. The gain-bandwidth performance of commensurate
distributed equalizers is compared with the performance of a
lumped-element equalizer. In Section III it is shown that
techniques introduced by Levy [6] for the synthesis of a
ladder network with stub lengths different from those of the
interconnecting lines may be used to advantage, this being
illustrated in Section IV by an equalizer of improved gain—
bandwidth performance. Gain—bandwidth limitations for a
particular transistor are estimated in Section IV and some
design examples are presented using both the direct syn-
thesis method and a computer-aided technique. Theoretical
and experimental results are compared.

II. LiMITATIONS ON AMPLIFER GAIN

The study of gain—bandwidth properties of a microwave
transistor amplifier requires a suitable representation of
transistor performance at frequencies approaching fu.x, the
maximum frequency of oscillation. Complex circuit models
have been proposed [9], but are not readily suited to the
problem. The work in this paper relies upon both an analytic

»or numerical model of transistor gain and a simple circuit

model representing the output impedance of the transistor.



