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Scattering from a Round Metal Post and Gap

JOHN A. BRADSHAW

Abstracf—Improved expressions are derived for the microwave
fields scattered by a uniform electric-field incident on and parallel
to a round metal post, with gap, in wavegoide and in two related
structures. A pair of variational expressions are found for the scat-
tering and for the gap reactance under even excitation. The results
are compared with those due to Lewin, and with data in the lVave-
guide Handbook.

1. INTRODUCTION

A

MICROWAVE structure of current interest is the

round metal post, extending partway across a rec-

tangular waveguide, its axis parallel to the E lines of

the propagating mode. An open gap will be assumed between

the post and the floor of the guide, although in practice this

gap often contains a passive or active semiconductor. The

structure was analyzed by Infeld in 1949 [1] and by Lewin

in 1951 [2], 1957 [3], and 1959 [4]. Certain shortcomings in

Lewin’s papers triggered the present work which, although

critical of these papers, builds in large part on Lewin’s pioneer-

ing efforts.

We will emphasize the field aspects of scattering from a

passive loss-free (PLF) post and gap. The unexpected

clarity of the results makes a comparison with Marcuvitz’s

data [5] useful. In a companion paper we will derive the

gap impedance seen by a driven post [6], as recently measured

by Eisenhart and Khan [7]. These authors take a flat strip

as a model for their post; we will, instead, first remove the

sidewalls of the guide to simplify the analysis of scattering by

a round post, and later account for the sidewalls by image

methods.

II. AN OUTLINE OF THE ANALYSIS

Our first model, sketched in Fig. 1, assumes infinite parallel

metal plates separated by a distance b. A metal post of radius

a and ideal conductivity extends down from y = b to y = d

along the axis of a cylindrical coordinate system (rOy), leav-

ing a gap between y = d and the origin in the lower plate.

The odd system (@y) was chosen so y fits later into the (xy.z)

system of a rectangular waveguide. In this model’ a plane

TEM wave ~ Re [exp~(d - kz) ] falls on the post, causing

currents along its surface and excess charge near the gap. The

currents and charge cause scattering fields; of these, the

TEM alone reaches large values of r, if, as we usually assume,

b <A/2.

If the post had no gap, an expansion about the post axis,

exp ( –jkz) = Jo(kr) + 22 ( –j)~Jm(kr) cos wzd (1)
m=1

would lead to the classical formula for power scattered per

unit incident intensity: the total scattering cross section is a
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Fig. 1. The post with gap, between Parallel Plates, with the dimensions
a, b, and d, and the coordinates r, y, and z of the systems (v6Y) and
(Xyz) .
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pig. 2. The scattering amplitudes, sin &, of modes of a rouncl cylinder
of radius a, under excitation by a plane traveling wave w Re [exp
–jkz ] are plotted against ka.

sum of distinct contributions from each mO mode,

(2)

Here the phase angles & are those of the Hankel function of

the second kind, ~~(ka), and ~~ = 2 – ti~”. (We will omit the

superscript from H~; cot & = — iV~(ka)/Y~(ka) is the nota-

tion of Morse and Feshbach [8, p. 1564].) The first three

contributions to Qb are plotted as functions of kw in Fig. 2.

The extra curves sin &’ refer to scattering from waves with

electric polarization across the post, and were drawn to re-

assure the reader that such may be ignored. The major in-

terest lies in curves of sin 80 and sin 81; introducing a gap will

not disturb the relative amplitudes scattered from a post

excited by a plane traveling wave.
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Fig. 3. The equivalent T circuits of a post in waveguide, following
Schwinger (S) and Marcuvitz (M).

The relative scattered amplitudes depend, however, on the

type of excitation: in the presence of a second (reversed)

traveling wave = Re [exp ~(oJt+ kz) ], the net excitation will

include a standing wave. Schwinger [9] based his analysis of

scatter from a solid post on even and odd standing-wave

fields, cos kz and sin kz, respectively, which excite even and

odd m-terms in Qb. He related the scatter to elements of a T

circuit, S in Fig. 3; Marcuvitz’s data on the post with gap are

in terms of X. and Xb, the lumped shunt and series reactance

of his T circuit, M in Fig. 3. To compare them, the impedance

across the 1,1 terminals of Schwinger’s circuit, under an even

excitation which produces an open circuit across the 0,0 ter-

minals, is 211+ Z12=~(2Xa— X~). The 1,1 impedance under

odd excitation, which produces a short across 0,0 terminals,

is .ZU — 212 = ‘jiXb.

In the data for small gaps, xb with increasing post radius

follows the sin & curve of Fig. 2. The data appear in three

sets: ka ~0.15 for set I, ka(II) ~0.30, and ka(III) ~0.60. The

ratio (sin &/sin &) for these sets is close to 28, 12, and 4, re-

spectively. The present paper considers only scatter inde-

pendent of 6, so at least in the third set we must treat xb with

some care.

In our analysis, two different routes lead from Maxwell’s

relations to formulas for modal impedances Z.. [The Z. are

ratios of Fourier amplitudes in expressions for c(y), the elec-

tric field at the post radius, and l(y), the post current. ] In

an example, we will use relations between c and 1 to refine

both functions of y well beyond zero order, where e is as-

sumed uniform in the gap. From ~ and 1 we will find S, the

ratio of scattered to incident TEM components of the electric

field, Again two routes, one direct and one variational, lead to

formulas for S(kb, a, d).

An .S may also be found for a post in rectangular wave-

guide, or for a comb structure in stripline [IO], and related to

parameters of the equivalent T circuit. After analysis of

Marcuvitz’s data in terms of this .S and the gap capacitive

reactance XC, we will review briefly some other literature on

these structures. We turn now to work, through the model of

an isolated post, toward results that will apply in waveguide.

III. FIELDS AND 2. BY GREEN’S FUNCTION METHODS

A brief s-ketch below of the theory will serve to define

our notation; the major symbols are also listed in Appendix

1. The surface density of current excited on the post, Yu(rOy)

= 1(y)i3(r – a)/27ra, is the source of a scattered wave of vector

/potential AU satisfying [V2+ k2]AV = –pJu. We w 11 ignore

some details of the gap, including any radial curre~ts there.

With Green’s second theorem one finds Au= pfjj’k GJU dv’

+ a surface integral. In this form, v is th~ volume

{O<y<b, O<K<R] in a large cylinder around he post,
f

and G is the (yy) term of a dyadic Green’s function [11].

We can treat G here as a scalar. The surface integral Ivanishes

by reason of a radiation condition at y = R, and bedause the

normal derivatives of G and of AU vanish on the metal plates

aty=Oandy=b [12].

LThe complete expression for G satisfies [V2 k’]G =

– IS(~-~’), and appears in Appendix II. The part of G in-

dependent of 6 is

G,(r, r’; y, y’) = – jH,(kr>)~O(kr<) [(46)-1] ~

+ i K,(rn,l’>)r,(rn,f’<) [(7J]
n= 1

. cos nry’/b cos n~y/b. (3)

Here Ho is the Hankel function, JO is the Bessel function, KO

and 10 are modified Bessel functions, r < represents the radial

position of the source point ~’, and r > represents the position

of the observer at ~. We assume b <A/2 so that r.02 = (mr/b)Z

– kz is positive for n >1. To emphasize dependence on r or a,

in this section and the next, the arguments of JO and HO(k~ or

ka), and of KO and 10(17nor or I’fiOa), will be written (r) or

(a). Writing I(y) as a Fourier cosine series in O <y <b, thus

I(y) = 10+2 ~~. * 1. cos n~y/b, one can integrate formally

over G1 to obtain AU for r>a:

From here on my/b will usually be shortened to a.

The scattered fields derived from Av have three vector

components:

‘J=-’”[1+H3A,
E,’ = –j: “ ‘4,

k’ ady

8
/.tHe8 = — — Al,.

We will omit E:; writing

Eva and Ho’:

dA”o/dq as K;(q), we find

4

At r = a, both in the gap and along the surface of the post,

can assume a second Fourier cosine series to represent

(5)

for

(6)

(7)

one

the
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total y-component of electric field: e(y) =eo~+2 ~~=len cos

nti. This total field may include both incident and scattered
s. in (6) we can find d= Eus(r= a). ‘owelements, d =e~+e ,

comparing Fourier coefficients leads us to define the modal

impedances mentioned previously:

ZOIO= –to’b, Z.=? IIo(ku).lo(ka) (8)

ZnIm= –~nb, zn= –
j{kb
~ Ko(I’,,oa)Io(I’. oa)I’.02[2]2]. (9)

Lewin’s result by this method, his equation for Z., is [3,

eq. 10]:

– Zjx% = –
j{kb
— K,(r.Oa) r.,’ [k-z].

27r
(10)

He also anticipated a factor exp (mra/b), but did not give

l@nOa). In these formulas ~= I/q is the usual impedance of

free space ~w/e.

IV. FIELDS AND Z. BY A DIRECT MATCH

To confirm the results above, one can find modal admit-

tances, inverses to ZO and Z., by a complementary approach

suggested in Lewin’s 1959 paper [4]. Ev’, as a solution of the

wave equation outside its source, the current cylinder at

? = a, must have the form

HO(7)
Ev’ = CO’—- + 2$ ~n~~cos ?1Z2. (11)

HO(a) .=l KO(a)

The corresponding trial forms for Efl and IIoS must satisfy

13EU’ 1 r%E,S
—+-— =0

dy r df’ -

(12)

Hence, again omitting E,’, we find

Ho’(y)
He’ = – j~eo’ —— + Zjkq ~ 2 ‘Y COS ?z1.i. (13)

Ho(a) .=l rno Ko(a)

In the gap and inside the current cylinder, the matching

trial forms must be well-behaved at r = O and must satisfy the

wave equation. Eva must be continuous across f =a, but HOS

will be discontinuous by the amplitude of the y-directed cur-

rent:

Io(r)
Ev8=eo’h@-+2~e. — Cos Mi.

Jo(a) .=l 10(a)

Jo’(r) m Io’ (r) k
He’ = –jeos~ —— + Zjq ~ en — Cos ‘lLii –—

Jo(a) n= 1 IO(a) r..

– zjl

{

27ra
I(y) = 2raAHtF(~ = a) = – jqeo’ ——

Jrka HO(a) JO(a~

27ra k ~–l{
+ Zjq ~ en

n=l ‘o(a) ~O(aj E 1.i7J Cos ‘ano

Here the terms in brackets represent the Wronskians

(14)

(15)

(16)

{Ho,

YO} and {KO, 10]. The desired modal admittances) defined

by 10= – YOt08band by I,, = – Y,,enb, can be identified in (16).

-- .

L~/9,(01-9,m)
/
/=’ ;/

\
-f, ,

0 05< 1“11 075.-— ‘? 22 ? (5 “

Fig. 4. Trial forms for c(y), the gap field, and the corresponding forms
for the post current I(y) are plotted against ti = ~y/b, with the gap
parameter u = rd/b taken as 5/8.

Comparing them with (8) and (9), one finds, indeed, YO

= I/Z. and Y.= I/Z.. Lewin’s result by this method is in

[4, eq. 5]:

ka KO’(1’mOa)
Y. = 4rqj — —— . (17)

mob Ko(rnoa)

Lewin omitted the fields inside the post and missed the

correction — l.’/10 which, with .KO’/Ko, gives the Wronskian

and aligns the forms in (16) with those in (8) and (9). In our

view [13], the incident field EvinC=Ev; exp (~jkz) passes

tlzwugk the post and gap; the scattered fields inside the post

radius are included in the Green’s function and are required

in this boundary-matching method too.

V. AN EXAMPLE USING THE INTERRELATION OF 1(Y) AND e(y)

For a PLF scatterer, we require Ef(y) = O on the post

(d< y< b), and 1(Y)= O in the gap (O <y <d), so the integral

of their product vanishes: ~~ e(y)~(y) dy = O. First a direct

approach will show how the form of ~(y) in the gap affects the

form of l’(y), and through 1, .S. Later we will determine .S by

variation of the integral.

The direct route is smoothed by use of functions related

to Clausen’s integral [14]. Starting this route, we represent

e(y) in (O<y <b) by a product of a unit step function h(d– y)

with a power series in ti (here h = 1 if y <d, k = O if y>d).

We next express each term of e(y) by a Fourier cosine series

j,. The nth coefficient in such cosine series, when multiplied

by Y., becomes, as we have seen, the nth coefficient in the

corresponding cosine series g~ for 1(Y). Then the weight of

each power of ti in e(y) is, with 10, adjusted so that 1(Y)

vanishes in the gap. Two observations simplify this process.

First we note that KO(X) 1O(X) = l/(2X) to within 0.6 per-

cent if I’.Oa = X >5, within 4 percent if X>2, and exactly

near X = ~. The relation is of no use below X = 0.4, but where

it applies we may write

Y&4~vjka2/Xb or if X&n~a/b, Yn~4jVka/tz. (18)

Secondly, we note that dividing each Fourier coefficient in fi

by n yields a form gi which -readily converts back to a short

Clausen series in powers of ti.

The example in Fig. 4 shows three steps in the process of

improving e(y) through ~(y); in it we take u = rd/b, the gap

parameter, as # = u. The three trial forms were the uniform
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field e(y) =230h(d-y), and d(y) =&k(d-y)(l+az#/r2), and

finally, with two adjustable coefficients, d’(y) =&lz(d-y)

(l+ ba/~+cti2/rrz). The choices plotted areu=l fore’, and

b= O.28 and c= O.69 for e“, The explicit forms forf; and gi,

and a figure illustrating these forms for i=l, 2, 3, and u=:,

have been retired to Appendix III. In Fig. 4, with the uniform

field e, I(y) is zero at zz=O, but increases as g,(0) –gl(ti)

across the gap; with e’, I’in the gap has a second zero; I“

presents a further improvement, and the process could be

carried to higher powers of ti in e(y) as in minimum-ripple

filter design.

The curve Eg in Fig. 4 is a static E,(y), calculated at

r=a for a charged ring at y= (d+s), with ring radius r = (a–t)

and with s = t = a/4. It represents the effects of rounding the

post edge. The dashed curve E,, for comparison with e’ and

e“, represents Schwinger’s field [9] in the plane of a capacitive

iris, and is more singular at a = u than those we should con-

sider.

The exact contour of the post end near y= d will affect

I(y) and e(y) there; given a detailed model one might formu-

late a precise edge condition as required in Wiener-Hopf

techniques. The oscillations (Gibbs phenomenon) which the

Fourier series for jl develops at y = d should be mentioned.

Finally, the coefficients a, b, c in the trial forms of e(y) were

assumed to be real; however, these will be complex if modes

others than TEM propagate (b >X/2). Then ~ and 1 may

change shape within each cycle, as is the case for I(y) on the

linear antenna [15].

VI. A DIRECT SOLUTION FOR .S

Fine details of the post end should have less effect on .S

than on e(y). Since 10= – YO~Oib.Sand eOf = eOi(l + .S) the con-

dition 1(0) = O= 10+ 2 z:. 1 In yields an equation for S

=& J*/eo~:

SYo + 8jkaq(l + S)q(ti) = O. (19)

Here, if we may use Y. Q4jkaq/n, the real function q(u) is

linear in gi; in zero order it is simply g] (0)/u, and in general

through Clausen’s series g(u) can be put in the form:

q(zt)=Ao -lnlu\+A2z42/72+” . . . (20)

The constants A o and -4 j, evaluated with formulas from Ap-

pendix III for the trial curves q c’, and e“ of Fig. 4, yield the

the values Ao= 1, 0.833, 0.877, and AZ= 1, 1.20, 1.15, respec-

tively. Thus A Oand Aj depend little on the coefficients a, b, c,

and the main term, — in ] u\ , at small u is independent of

them. For comparison, Schwinger’s direct solution for the

capacitive iris is:

q(u) = In csc u/2 = 0.693 – lnlul+u2/24 +....

To examine the solution for .S, we rewrite the complex

equation (19) as two real equations with S = s+jt. We find

s2+t2+s+tcot&=o (21)

s = t(8kaq I 20 I csc 80q(u) — cot 80). (22)

The first equation defines a circle on the complex S plane,

which passes through the points S = O and S = — 1, with center

at S = — ~ [1 +j cot 60] and radius ~ csc 60. The circle thus

depends on ka, but not on q(u) or on the gap d. Its intersection

with the line through the origin given by (22) defines the

complex scattering S for a given post and frequency.

VII. VARIATIONAL EXPRESSIONS FOR S

S may also be found from integrals in forms which reduce

the effects in S of “errors” in ~(y) or I(y). Let us denote by

e(y) and i(y) the sums (n > 1) in the cosine expansions of e

and I:

w

e(y) = 2 ~ en cos nti = e(y) — 60$

n= 1

co

i(y) = 2 ~ 1. Cos ?’222. (23)
n==2

The Maxwellian conditions relating e(y) and i(y) in (6) and

(16) can be incorporated in two kernels which are real, sym-

metric in (y, y’), and orthogonal to 1 in the interval (O< y

<b). With them we write the parallel forms:

s
b

e(y) = — j k(y, y’; Z)i(y’) dy’
o

s
b

.
–j k(y, y’; .z)~(y’) dy’ (24)

o

s
b

i(y) = j k(y, y’; I’)e(y’) dy’
o

s
b

=j k(y, y’; ~)c(y’) dy’. (25)
o

Here the kernel k(Z) depends on the modal impedances Z.

defined in (9), and the kernel k(Y) depends on Y.. The second

form in each case following is a closed form, but it depends

on the approximation from (18), Yn” = 4Jkaq/n:

k(y, y’; Z) = $ ~1 Z. cos n~y/b cos n~y’/b
n

{ [( )
–1

.— 1 – Cos; (y’ + y)
8ka

(
–1

+ I–coS; (y’–y) )1 (26)

k(y, y’; Y) = – 2j ~ Y. cos n~y/b cos nxyf/b
n=l

= – 4kaq [ln 2 ) cos my/b – cos ~y’/b I ]. (27)

The relation jj e(y) I(y) dy = O now has two forms which

the reader will recognize as “variational.” To bring this out

let us define Y = ( YoS)/(l+S) and its inverse Z= ZO(l+S)/.S

so that eOtbIO=jy [j; e dy]z =jZ [j; 1 dy] 2. But cOtbIO=

–J$ e(y) i(y) dy, so:

bb

eotbIo = j
Ss

I(y)l(y’)k(y, y’; Z) dydy’ (28)
00

bb

.—
j

H
4Y)4’)KY, Y’; Y) dydy’. (29)

00

Thus (28) is stationary in Z for small departures 61 from the

true current form, provided 51 vanishes, like the true 1,, in

the gap; and (29) is stationary in Y for small departures &
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Fig. 5. Apostat (xo, ZO)asseenfrom above inawaveguideof widthw,
and theimagepostsatz= ~xo+2w.

from anexact e,(y), if &= Oon the post. Completing the in-

tegrals, we find two forms for s:

Z = – 2 ~ Im2Z. [10]-2 = + j~[8kaq(u)]-1. (31)
n-l

The first form suggests a model for Y: a parallel connection of

modal admittances seen through transformers with turns

ratios G/cot. The second form suggests a model for Z: a series

connection of modal impedances seen through transformers

with turns ratios 1./10. The choice of circuit model depends

mainly on whether one knows, or can guess, more about

e(y) or 1(Y).

Equation (30), with the form of e(y) used in Fig. 4, yields

for q(u) the same expansion given in (20), but with A o

= 0.807, 0.790, 0.820 and Az= 2.00, 2.34, 2.40 for q e’, and

d’, respectively. Again, the main term for small u is – in \ u 1,

independent of the coefficients a, b, c; A o and A z do not change

much either as e(y) improves.

VIII. SCATTERING IN RECTANGULAR GUIDE

AND IN STRIPLINE

These results may now be applied to more practical cases

of scattering from a post with gap. The sidewalls of a wave-

guide, at x = O and x= w as sketched in Fig. 5, are mirrors for

a single post with axis at XO, ZO. If m is any integer in (— CCJ,

co), the image posts at x = XO+ 2rnw carry currents ~(y), while
image posts at x = — xO+ 2mw carry — l(y). In a stripline

crossed by a comb structure, each combtooth or post in a

lattice of cell width w will carry the same current 1(Y); in a

regular comb, xo = w/2 [10]. In both guide and stripline,

Green’s functions may take the form of sums over these

replicated sources, Poisson’s formula, as given in Appendix

IV, converts sums on HO and on KO to sums on sinusoids.

We use it with the n= O (Ho) sum, but it is both convenient

and reasonably accuratel to retain in our Green’s functions

only the nearest, or actual post, as the source of terms for
?Z>1. The G(n) following appeared already in (3):

G(n) = i Ko(r.or)Io(rnoa) (n_b)-l cos ntry’/b
%=1

oCOSn~y/b. (32)

For waveguide (wg) and stripline (s1), with X’= kz– (r/w)’,

and I’ti2= (m~iw)z— k%, where m >2, from Appendix IV we

I Evanescent modes (n> 1) from sources in other cells make a very
small addition to Ay in the main cell, if r.w >2, so Ko(I’.oa) >>~o(r~02~wI).

find

Jo(,4u) exp–jX I z–zo I
G(wg) =~

{
sin Tx/w sin rxo/w

% jX

+G(n) (33)

JO(ka) exp –jk I z–zo I

{
G(sl) = ~ —

2jk

II“ exp —rom 2—20

+x——— cos m7rx/w cos mirxo/w
m=1 rom }

+ G(n). (34)

These two Green’s functions could ~be derived from

[V2+k’]G= -~(~-~’), with the right boundary conditions

on the cell walls, instead of replicating image terms. Even the

factors YO(ka) and l@~Oa), due to integrating over sym-

metric current distributions on the post surface, could be

found by this route too. By the route we chose, each post sees

the same eOi, which includes scattering contributions from all

the others, so the mutual interactions of post and images will

be included in an q’ based on the terms with n = O in G.

The scattered fields for both structures are derived in

Appendix IV from AU= wJj G(y, yo) I(yo) dyo. Variational

forms arise from J: e(y)I(y) dy = O, as for a single PLF post,

but the impedance ZO = – e#/10 is changed by image effects:

Zo(wg) = ~ .TO(ka) sin ~ sin ~ (xo + a)
KW w 7LJ

.(1 + j cot e(wg)) (35)

ZO(S1) = ~ .TO(ka)(l + j cot 6(s1)). (36)

Here cot ~ = Im (ZO)/Re (ZO) plays the role of cot 80 for an

isolated post, and is given by a series like Lewin’s equation

[3, eq. 11], or Marcuvitz’s equation [5, sec. 5.11, p. 256,

eq. 1]:

sin m7rx0/w sin m7r(x0 + a)/w
cot e(wg) = ~:’ :

{ }
(37)

sin 7rzo/w sin ~(xo+a)/zo

cot c(s1) = ~l~~[cos mra/w+cos m~(2xO+a)/w]. (38)

Because we can retain G(M), Z. remains the same as in (9)

and g(u) in (19) is unchanged, but YO will be given by l/ZO,

(35) or (36); with this change, and with e replacing ~0, the

circle and line equations (21) and (22) apply now to scatter

from a post in waveguide or in stripline.

IX. CORRELATION WITH MARCUVITZ’S DArA

Marcuvitz’s data, although taken before 1950 and printed

without analysis, are at least readily available. The data con-

sist of values of X. and Xf,, as noted in Section 11 above, for a

centered post in X-band guide (0.9 inXO.4 in). They are

given in three sets for posts of radius 1/32 in (I), 1/16 in (II),

and 1/8 in (III); in each set three frequencies, corresponding

to k (free space) of 3.4, 3.2, and 3.0 cm, were used, and a selec-
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Fig. 6. Marcuvitz’s data, converted to a normalized inrmt impedance
Zin=Ri. +jXi., seen looklng atapmtbaclmrl lwamatcherf loarl and
plotted on the Smith chart. Key: +a=l/W in; Aa=l/16 in;
❑ a= 1/8 in.

tion of three to six gap sizes. Analysis of these data will show

howourscattering results apply, and howthe gap reactance

depends on gap size and post radius.

Tostart on familiar ground, weplot Zin(X~, X6), the nor-

malized impedance seen looking at the post backed by a

matched load, on a section of the Smith chartin Fig. 6:

2,. = j(Xu, – Xb) (1 – it’) + W,

w = x.’ [1 + (Xa – x,)’]-’. (39)

Data sets I(+) and II(A) fall on or close to the dashed circle

R= – (l+2jX)–1. In set 111(0) the points fall below this

circle and show the importance in Zi. of the series term X5.

The reflection R of a traveling wave passing a lossless ele-

ment with simple shunt reactance X falls on this circle for

any X in (— @ <X< co). The values of u indicate gap width;

the frequency variation within each set ( <14 percent) is not

coded.

We replot data sets I and II on the .S plane in Fig. 7,

using the relations:

Zi. – 1
CR=% R(l+jcotc) =S=s ,., “ (40)2

Z,. + 1 Eui

Fig. 7 illustrates the ~ equations (21) and (22) and serves to

contrast .S, the (n= O) field ratio at the post surface, with R

of Fig. 6, the wave-field ratio at large I z— zo I . Since cot e

depend’s on frequency (br ka) and fixes the center of the S

circle, Fig. 7 also spreads the points: set I points (L@ have

ka = 0.147, 0.156, and 0.166, respectively, while set II points

9At large Iz—zoI only the imaginary part of G(wg) from (33) con-
tributes to E9’, so EM%= – 10 Re (ZO); for a centered post EV; = &Oi; by
definition ZOIO= – &“b.

d

d

‘t O,-J -05,–J o,-J

Fig. 7. On the plane of complex scattering .S,two sets of data from Fig. 6
are replotted; points bcd are for a post of l/32-in radius, points opq
are for one of 1/16-in radius and various gap widths u.

Wotl
/ /,/,,.,,,,,, #

----1 l---”

~ —$ -,x -L-
2— c

/ / /,,/,,../ /.. o 0

co

Fig. 8. Symmetric or even field excitation of a post in a waveguide and
a lumped element model after Schwinger.

(o@g) have ka values double these. To avoid cluttering Fig. 7,

only one complete circle is drawn for each set. The value of

cot e may be taken from the data (for a post with no gap,

S= – 1) or calculated from (37); here agreement was good.

To include data of set III in further analysis, the reflection

R of Fig. 6, from one traveling wave, must be distinguished

from R., the reflection under symmetric excitation or even

fields. Opposite traveling waves of ~ unit amplitude, incident

from left and right in Fig. 8, may give an even unit field at

the post. The waves pass through the post, and the post, as-

serting its boundary conditions, radiates a reflection R, both

ways. At a plane X] z — zo\ = mr to the left of the post,

= j(2xa – Xb).

To find the gap reactance Xc, we first insert 20= Re

(l+j cot e) and .S= ~.(l+j cot c) into (19) to obtain

1 + ~ + j{ cot c – [gkaq Re (zJq(u)]-’} = O.
s

(41)

(20) .

(42)

In this expression one can identify the reactance of a post

with no gap, XO = cot e= (2X~— Xb) I U=O, and & the deviation

from XO caused by the gap:

X= = [Skaq Re (zO)q(ti)]-l = A(2X0 – Xb). (43)

For thin posts, R = R., and the shunt reactance of a thin post

with gap is X = ~(XO— XO).

Solving for g(u) in (42) we plot the data points, including

set III, in Fig. 9 as g(u)= [8kav Re (ZO) X.]–l. The dashed

curve q, was found by variational methods [(30) and Appen-
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~mm

1
4

3

2

~

t

o

Fig. 9, Thegapreactance function g(u) as calculated from (44) in the
solid curves andasfound forthepointsets I, II, and II Ifrom the data
in the Waveguide Handbook. Key: +a=l/32 in; Aa=l/16 in;
Da= 1/8 in.

dix III] inzero order ie, . ., uniform gap field and no adjustable

constants:

@(u) = 2(?2(2u) [(2u)-2] = 0.807 – In I u I

+ u2/36 + . . . . (44)

The solid curves give g(u) corrected: Yl” of (18) is a poor

estimate for the first modal admittance, I’1’ of (9):

q(u) = q, + (e,/d)2
[y’iji.~l ’45)

Here, in zero order, el/eot = (sin u)/u. The correction for Y2

proved negligible. The data points fall along the solid curves

with some scattering. Lewin [3] predicted the logarithmic

trend of g(u) as u+O, which the data points also show.

Ekenhart and Khan in [7, fig. 22] plot Xob,’ against fre-

quency, and a reviewer requested this format for Fig. 9. The

gaps used by Marcuvitz differ from run to run, however, so

his data must be plotted against u. In the limited range of

frequency explored (Aj/$~13 percent), P(f)= 8kaq Re (ZO)

is near a minimum, and varies with ~ less than 1 percent:

PI= 0.768 for set I, P1l = 1.485, and P1ll = 2.56; the near

doubling of P from set to set reflects mainly the doubling of

the post radius a. We plot g(u) in Fig. 9, therefore, without

coding frequency. Readers who wish to visualize results in

terms of I/X, may multiply g(u) by this factor P.

X. FURTHER DISCUSSION OF LEWIN’S PAPERS

In Lewin’s 1957 paper, the gap is also the input to a

coaxial line; it experiences ‘ta voltage drop 211 when a current

flows at the end of the probe, ” and the “field at the stub sur-

face is 211 ~(x)” [3, p. 110]. Changing Lewin’s x to our y, we

may take 211 ~(y) as the limit of — ( V/d)h(d — y) as d+O, a

common form in antenna work [16]. Lewin’s equation [3,

eq. (3)], relating the gap field to the field scattered there by

l(y) on the post, is an assumption about the form of e(y).

When Lewin ‘{solves” for I(y) in [3, eq. (13)–(20) ], he makes

its Fourier expansion consistent with e(y). If ~(y) be the trial

function, it belongs in a variational form for e(y), our (30);

such apparently is Lewin’s equation [3, eq. (23)], although

he started with a form variational in I(y) like our (31).

The series ~~., l/jXn in Lewin’s equations [3, eq. (18)-

(23) ] diverges wildly. If it represents ~~= 1 y~I~~12/ICO’12, the

divergence can be blamed in part, as Lewin suggests, on al-

lowing the “turns-ratio” for a uniform field qJeO$ = (sin nu)/

nu to become 1 as his gap vanishes. But the divergence is

also due to the form X. [3, eq. (10)], and he suggests stopping

the sum at n = b/2a when the lack of the factor 10(1’nOa) be-

comes disturbing. This factor in our Y~ protects our sum in

(3o) from divergence, and was obtained through boundary

conditions on fields inside our fictitious cylinder of current.

[The actual current density depends on r as Jo(– ~jcopu~),

a cumbersome form which all models avoid. ] Lewin, in pro-

posing the similar factor exp (1’~Oa), also considers relations

in the post between his fictitious axial current filament and

the post surface.3 In his 1959 paper [4], Lewin gives in cylin-

drical coordinates the evanescent fields near an isolated post;

he includes effects of a current sheet and a visible gap in his

model, thus improving his 1957 paper in several ways. He

does not, however, reconcile the 1959 and 1957 results or put

the post back in the waveguide as we have done.

Lewin’s fifteen-year-old problem with divergences should

challenge others to supply a firmer analysis, yet several more

recent papers [10], [17 ], and [18] use his waveguide results

without improving X.. Collin [19] also treats the probe

antenna in a waveguide, integrating over a product of

Green’s function and J, “currents on the probe and aperture

surface” [19, p. 258]. Four pages later he allows the current

to shrink to a filament. Thus as with Lewin, 10(1’nOa) = 1,

but Collin keeps to a form variational in current. Thus for

his Zn, the sum ~~= ~ 2. 11. \ ‘/\ 10 \ 2 no doubt converges too

fast, but no series in l/Z* arises, and no divergence problem

either.

XI. LINES FOR FUR~HER WORK

Lumped equivalent circuits often help in systematic in-

terpretation of microwave data, as for instance, ‘rsai, Rosen-

baum, and MacKenzie [20] demonstrate for the post, but

one needs an adequate field theory, even for this simple

geometry, to develop circuit parameters [21] and to know

how far to trust a given circuit. For a post in multimode guide

one needs a field theory of a round model rather than a strip

[7]. Thus our discussion of scattering from a post, and a

companion discussion of the driven gap, should be extended

to include odd excitation of thick posts, and multimode ex-

citation.

Criticism in microwave field theory has a distinguished

tradition; for example, Bouwkamp [22] found a hole in

Bethe’s famous paper on small coupling holes [23], and

Wigner [24] found an omission in Slater’s expansion on

cavity mode fields [25 ]. The gap between Lewin’s two in-

fluential treatments of a post with gap was in part clear to

Lewin; I hope I have filled it in.

APPENDIX I

Symbols used in two or more sections are listed alpha-

betically as follows, with the Section (in parentheses) in

which the symbol first occurs.

a, b, d Post and gap dimensions (II and Fig. 1).

AU Vector potential component (III).

3 Certain statements in [3, sec. 4, pp. 112–113 ] seem to me to involve
the 0 dependence of the incident field, although Lewin writes me that
the y do not. Gutmann and M ortenson [10 ] in a parallel discussion justif y
stopping the sum at ?s= b/a by a need to account for higher modes in the
gap. Neither the consideration of O variation nor of higher gap modes
seems to me central to the divergence of ~~~ l/jX.; neither considera-
tion is a trustworthy guide to correcting it.
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AiI, A2

b, W

C(Y)
e’, e“

e~, e8

co, %

Eo, a, b, c

E’, H’

G, G,

G(wg) , G(sZ)

G (n)

Ho, Io, Jo, No, Ko

I(y)

Io, I,

lz=w/c

q(n)

Qi(IL)

r, e, y
S=s+jt

U

a

X., xb

x., Xo

~, Y, z

Xo, Zo
Yo, Y.

Zo, z.

Zo(wg)

8.

rno
rti

E
x

f= I/q

co= 2Tc/A
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Constants intheseriesfor g(u) (VI). Ho = Hl)(kr>)Jo(kr<)

Waveguide dimensions (VIII). .
Electric field atr=a (post surface) (III). +2~coswz(e -o’) Hm(kr>)Jm(kr<) (47)
Versions ofc(y) (V). m= 1

Incident and scattered parts of ~(y) (III).

Fourier amplitudes of e(y) (III).

Constants intheexpansion ofe(y) (V).

Field components scattered away from

the post (III).

Green’s functions for an isolated post

(III).

Green’s functions for a post in guide or

comb (VIII).

Sum of modes n >1 in GO (VIII).

Standard notation for Bessel functions,

always given with variable, thus lO(I’nOa)

(II).

Post current (III).

Fourier amplitudes of l(y) (III).

Phase constant of plane wave (II).

Gap reactance function (VI).

Clausen series (IX and Appendix III).

Coordinates on the post (II and Fig. 1).

Ratio of scattered to incident fields on the

post (II).

Normalized gap width (V).

Normalized distance along post axis

(III).

Reactance in Marcuvitz’s T circuit (II).

Post reactance elements under symmetric

fields (IX).

Waveguide coordinates (II and Figs. 1

and 5).

Position of post axis in guide (VIII).

Modal admittances of isolated post (IV).

Modal impedances of isolated post (III).

Fundamental modal impedance in guide

for a post (VIII).

Phase of Hankel function 17.(ka) (II).

Mode constant on an isolated post (III).

Evanescent mode constant in waveguide

(VIII).

Phase of ZO(wg) (VIII).

Wave constant of TE1o propagating mode

(VIII).

Impedance of free space (II 1).

Angular frequency (II).

&I = &(r.@’>)~I)(r.ll ~<)

+ 2 ~ cos WL(6 – e’)zrm(rno~>)~m( rno~<). (48)
m=l

APPENDIX III

Collin [19, p. 576] outlines a technique which others

might use to advantage (for instance, Eisenhart and Khan

[7, p. 711]) for replacing slowly convergent Fourier series

with rapidly convergent power series related to Clausen’s in-

tegral [14].

1) To use this method with c(y) we define ~;(zz, u) thus:

s-f~+i%u) = “ji(zZ,w) du)
o

jo(zz, ‘u) = g Cos ‘vL12Cos ‘n’u. (49)
n,=1

We findjl = ~~.l (l/n) cos nti sin nu,jz= ~~.l (1/n)2 cos nti

(1– cos mu), and js= ~~.l (l/n)’ cos nti(nu– sin W); two

of these are well known by other symbols, (r/2)6(u – a) = ~

+~0(% u) and Iz(u– a) = (1~/r) + (2/7r)~1(a, u):

Wz(u – 27) = u + 2[f1 – j2/u]

[ 1ti2h(u-ti)=2~ :+jl —Z+: . (50)
u

2) On dividing each nth Fourier term in ji by n, we obtain

gi; for instance, go(ti, u) = zj=l (l/n) cos na cos nu. In fact

‘1
go = ~;l j-- [Cos lz(ti + u) + Cos ?t(ti – u)]

—— -*[ln2] Cosu - COS?2] ] (51)

as in (27), but the g~ for i >1 do not have closed forms. Sim-

pler forms Qt, defined like~, by iteration of integrals, are useful

to express g~; thus with Q;+l(u) = j~ Q~(w) dw, we find

rl
Uz u’

—‘–lnlztl+ m+-+...

APPENDIX II 1440

For a unit y-directed current source at ~’, causing a y-

directed vector potential at ~ between parallel metal plates Ql(U)=u[l –ln]u 1]+~+ . . .
at y = O and y = b, the complete Green’s function is G (~, ~’;

wry my’
. Cos — Cos —

b b
. (46)

Addition theorems for the HO and K. above yield explicit

forms:

[
Qz(u)=~ ~–lnlul]+~+”””

Q8(4~)=~[~–lnlul]+~+...

ml’
.

Z[][
— nu — sin nu].

n=l n

In terms of Q’s, the functions gi(u, z~) plotted in Fig.

(52)

10 are
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20

Ii 05 /0

Fig. 10. Thegapfield functions~~(u) andthepost current functions gi(u)
near the gap, which give the basis for Fig. 4.

3) If e(y) isgiven interms of~~, jz, and~~, then l(y) can

be expressed with g,, gz, and g,. Thus as plotted in Fig. 4,

.[ ’1236“(Y) =E~ l+~+; +— fl+Kfl-.f J2J)

s
m?

——

expj7bKO(yva2 + b2) db
—m

.—
. ~exp ~—av’r2+y2}{r2 +y2]–1/2. (57)

NOW let b=x–xo+q, db=dq, a=%–zo, and y=k; then pass

to discrete forms r+27rp/a = @/w and q+2mw = am. One

finds

=~exp{–jklz–zol}

Lewin [3] uses the similar sum over

Ko(1’.0<(2-20)2 +(x-xo+2f73w)2).

2) In the waveguide, EUin” = Ei sin (mx/w) exp –jKz

and Hminc = (qK/b)Euinc; we follow Lewin in choosing on the

post the surface point z = ZO, x = xo+a, at which to evaluate

the scattered field component CO’. At a reasonable distance

from the post Ev” consists only of the first term below times

exp ‘~K [ Z—ZO] ; the terms with m >2 are each atteriuated by

a factor exp { –rM\z–.201 ):

lk

{

7r(xo+ (z)
~os = — — YO(ka)10 sin H sin ———

K70 w w

( )1+cj1_3k+zJ (54)
u

[
I“(y) = 10 – 8jkaqE0 ~ gl + b(g, – gz/ti)

T

( )1+Cgl–32+?$. (55)
u Cog= — * l~o(ka)

+js-L sinwr(xo + a) m7rx0

~=2 rom
sin ——

1
. (59)

w w

3) For a stripline similarly, at a reasonable distance, the

first term below times exp ~ –jk I z – zO] } alone survives in

EU’ :

When e(y) and I(y) are given by such forms, the integral

which defines g(u) in (30), j: e(y) i(y) dy, consists of terms

of the form fi jigi da which integrate to give Qi+i(2u). For

example, from (43), fi~lgl da= 2 Qz(2u) [(2 ZL)-2]. Here we

have an accurate form for the whole “tail” (n+ m ) of the

Fourier series for q(u), although we may still need to correct

the “front end” (n= 1) as in (44) if Y1a# Y1’.

APPENDIX IV

Forms based on Poisson’s summation [19, p. 588] will

allow us to include neatly the image sources for the fields.

1) Whenever the Fourier transform of f(b), F(T)= fg f(b)

exp – jbr db exists, it follows that ~~. -~ j(cm)

= (l/a!) ~;= -. F(2@/a) . The transforms we need are

[19, p. 268]:

S
.

expjrbHo(yv’a2 + bz) db
—cc

_—. —
= 2jexp {–ati72– y21{w’’~2– y’\-l (56)

“{ [ m7ra 2m7rxo
l+j ~1~ cos —

1}
+ Cos —— . (60)

w w

Hm’ may be found from E.’, and then ZO(S1) as in Section III.
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Gain-Bandwidth Limitations of Microwave

Transistor Amplifiers

RODNEY S. TUCKER

Absfracf—Gain-bandwidth limitations of broad-band single-
stage microwave transistor srnplitiers are related to a simple transis-
tor circuit model, to constraints on characteristic impedance in a
distributed-element equalizer, and to the line lengths of this equal-
izer. The gain-bandwidth performance of commensurate distributed-
element equalizers is compared with the performance of a lumped-
element equalizer, and four distributed-element design examples
are presented, including two commensurate e equalizers and two
computer-optimized networks.

1. INTRODUCTION

s

TI MULATED by developments in microwave transistor

technology, a number of authors have discussed the

problem of broacl-band microwave transistor amplifier

design using computer-aided techniques [1], [2]. Recently,

the work on broad-band impedance matching introduced by

J?ano [3], and extended by Youla [4] and other authors, has

been applied to the synthesis of distributed commensurate

equalizers for microwave transistor amplifiers [5]. This pro-

cedure relies upon certain approximate models of the transis-

tor, but has proved successful in the design of single-stage

and multistage amplifiers and in the problem of choosing an

appropriate design with which to begin a computer-aided op-

timization scheme.

Manuscript received Jully 10, 1972; revised December 11, 1972. This
work was supported by the Australian Radio Research Board.

The author is with the Department of Electrical Engineering, Univer-
sity of Melbourne, Parkville, Victoria, Australia.

This paper extends the scope of work previously reported

[5]. In Section II the gain-bandwidth limitations of a single-

stage amplifier are related to a simple transistor circuit model,

to constraints on the characteristic impedance in a distrib-

uted-element equalizer, and to the line lengths of this equal-

izer. The gain–bandwidth performance of commensurate

distributed equalizers is compared with the performance of a

lumped-element equalizer. In Section III it is shown that

techniques introduced by Levy [6] for the synthes;s of a

ladder network with stub lengths different from those of the

interconnecting lines may be used to advantage, this being

illustrated in Section IV by an equalizer of improved gain–

bandwidth performance. Gain–bandwidth limitations for a

particular transistor are estimated in Section IV and some

design examples are presented using both the direct syn-

thesis method and a computer-aided technique. Theoretical

and experimental results are compared.

II. LIMITATIONS ON AMPLTFER GAIN

The study of gain–bandwidth properties of a microwave

transistor amplifier requires a suitable representation of

transistor performance at frequencies approaching &X, the

maximum frequency of oscillation. Complex circuit models

have been proposed [9], but are not readily suited to the

problem. The work in this paper relies upon both an analytic

or numerical model of transistor gain and a simple circuit

model representing the output impedance of the transistor.


